Trace Finite Element Methods for PDEs on Surfaces
نویسندگان
چکیده
In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject.
منابع مشابه
Numerical Analysis and Scientific Computing Preprint Seria An adaptive octree finite element method for PDEs posed on surfaces
The paper develops a finite element method for partial differential equations posed on hypersurfaces in R , N = 2, 3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. Th...
متن کاملAnalysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces
We present a new high order finite element method for the discretization of partial differential equations on stationary smooth surfaces which are implicitly described as the zero level of a level set function. The discretization is based on a trace finite element technique. The higher discretization accuracy is obtained by using an isoparametric mapping of the volume mesh, based on the level s...
متن کاملA Volume Mesh Finite Element Method for Pdes on Surfaces
We treat a surface finite element method that is based on the trace of a standard finite element space on a tetrahedral triangulation of an outer domain that contains a stationary 2D surface. This surface FEM is used to discretize partial differential equation on the surface. We demonstrate the performance of this method for stationary and time-dependent diffusion equations. For the stationary ...
متن کاملAdaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کامل